Thermodynamic cycle analysis and inhibitor design against beta-lactamase.

نویسندگان

  • Tomer A Roth
  • George Minasov
  • Stefania Morandi
  • Fabio Prati
  • Brian K Shoichet
چکیده

Beta-lactamases are the most widespread resistance mechanism to beta-lactam antibiotics, such as the penicillins and cephalosporins. Transition-state analogues that bind to the enzymes with nanomolar affinities have been introduced in an effort to reverse the resistance conferred by these enzymes. To understand the origins of this affinity, and to guide design of future inhibitors, double-mutant thermodynamic cycle experiments were undertaken. An unexpected hydrogen bond between the nonconserved Asn289 and a key inhibitor carboxylate was observed in the X-ray crystal structure of a 1 nM inhibitor (compound 1) in complex with AmpC beta-lactamase. To investigate the energy of this hydrogen bond, the mutant enzyme N289A was made, as was an analogue of 1 that lacked the carboxylate (compound 2). The differential affinity of the four different protein and analogue complexes indicates that the carboxylate-amide hydrogen bond contributes 1.7 kcal/mol to overall binding affinity. Synthesis of an analogue of 1 where the carboxylate was replaced with an aldehyde led to an inhibitor that lost all this hydrogen bond energy, consistent with the importance of the ionic nature of this hydrogen bond. To investigate the structural bases of these energies, X-ray crystal structures of N289A/1 and N289A/2 were determined to 1.49 and 1.39 A, respectively. These structures suggest that no significant rearrangement occurs in the mutant versus the wild-type complexes with both compounds. The mutant enzymes L119A and L293A were made to investigate the interaction between a phenyl ring in 1 and these residues. Whereas deletion of the phenyl itself diminishes affinity by 5-fold, the double-mutant cycles suggest that this energy does not come through interaction with the leucines, despite the close contact in the structure. The energies of these interactions provide key information for the design of improved inhibitors against beta-lactamases. The high magnitude of the ion-dipole interaction between Asn289 and the carboxylate of 1 is consistent with the idea that ionic interactions can provide significant net affinity in inhibitor complexes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ترکیب آنتی‌بیوتیک‌های بتالاکتام و مهارکننده بتالاکتاماز علیه سویه‌های انتروباکتریاسه تولیدکننده بتالاکتاماز با طیف وسیع

In the last decades, Extended-Spectrum-β-Lactamases (ESBLs) in gram negative bacilli have appeared as a significant mechanism of resistance to antibiotics. Although resistance to carbapenems is increasing among bacteria, they are still the treatment of choice for serious infections caused by ESBL producers. Therefore, the aim of the present study was to evaluate the effect of ß-lacta...

متن کامل

Activity of beta-lactam beta-lactamase inhibitor combinations against extended spectrum Beta-lactamase producing Enterobacteriaceae in urinary isolates.

OBJECTIVE To determine the susceptibility pattern of beta-lactam beta-lactamase inhibitor combinations against extended-spectrum beta-lactamase (ESBL) producing Enterobacteriaceae in urinary isolates. STUDY DESIGN Observational study. PLACE AND DURATION OF STUDY Ziauddin University Hospital, Karachi, from February to October 2008. METHODOLOGY A total of 190 consecutive non-duplicate isola...

متن کامل

Thermodynamic modeling and comprehensive off-design performance analysis of a real integrated solar combined cycle power plant

In this paper thermodynamic modeling and comprehensive performance analysis of a real integrated solar combined cycle (ISCC) power plant are performed. Performance of the plant cycle is assessed in off-design condition and in two operation modes of power-boosting and fuel-saving. Such an approach has not been considered for an ISCC plant in the previous studies. Under studied ISCC which is loca...

متن کامل

Evaluation of the Effects of Iron Oxide Nanoparticles on Expression of TEM Type Beta-Lactamase Genes in Pseudomonas Aeruginosa

Pseudomonas aeruginosa is a common cause of surgical-site infections and healthcare-associated infections in the bloodstream, and urinary tract. Iron oxide nanoparticles (IONPs) have shown, to possess antibacterial features. The nanoparticles' status as emerging therapeutic elements has motivated investigators to assess the effects of iron nanoparticles on the expression of TEM type be...

متن کامل

Lytic Activity of Isolated Phage from Milk Against Extended-Spectrum Beta-Lactamase Escherichia coli

 Background and purpose: Escherichia coli (E.coli) is the most common cause of urinary tract infection. The treatment strategy has been hampered by the emergence of broad-spectrum beta-lactamase-producing E.coli and its resistance to most antibiotics. Bacteriophages are suggested as an alternative treatment option. This study aimed at evaluating the lytic activity of isolated phage from unpaste...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemistry

دوره 42 49  شماره 

صفحات  -

تاریخ انتشار 2003